
By Barry Seymour

Mouse Patrol
Remember the old "Outer Limits" TV show? Okay, you don't have to remember it from when it
was originally on, you just have to remember a rerun from somewhere. (That's all I
remember). At the opening of the show, the announcer intones "we control the video -- we
control the audio."

Well, I'm not sure about the video, and the audio definitely has to wait for a future column, but
this week we can show you how to control the mouse. Not the mouse as the USER moves it,
but the mouse as YOU move it, in Visual Basic code. You can move the mouse yourself, or
limit where the mouse is allowed to go on the screen. This is a small but necessary step
towards world domination.

Say you want your program to demonstrate some technique to the user. You'll want your code
to move the mouse, won't you? Using the Windows API this is a two step technique. First you
specify the area the mouse is allowed to be in -- this is known as 'clipping' the cursor -- and then
you move the mouse cursor there. You can put the mouse exactly where you want it by
specifying only one point as being allowable for the mouse cursor. A call to move the mouse
anywhere puts it right where you want it!

Putting this procedure in a loop allows you to move the mouse any way you want to; you're only
limited by your ability to write hip algorithms describing the mouse's movement.

The two API calls you'll need are ClipCursor and SetCursorPos. We'll show you the global
declarations you'll need for these functions, as well as the related user-defined type RECT; then
we'll then explain them one at a time...

Declare Sub ClipCursor Lib "User" (lpRect As Any)
Declare Sub SetCursorPos Lib "User" (ByVal X As Integer, <+>
 ByVal Y As Integer)
Type RECT
 Left As Integer
 Top As Integer
 right As Integer
 Bottom As Integer
End Type

The ClipCursor sub 'clips' the area the mouse is allowed to be in. It's sort of like the invisible
line you used to draw across your room to keep your little brother out (or in), only this one
works. You use the user-defined type RECT to create a variable holding the bounds of the
area allowed. You then pass that variable to the API call, and the mouse is locked into the area

you defined.

There are some things to keep in mind when using ClipCursor...

The variables in RECT refer to an area defined in pixels. Since the Screen object in
Visual Basic is defined in twips, you need to allow for the conversion between twips and pixels.
(There are 15 twips to a pixel.)

Also, remember to restore the clipped area to the full screen when you're done! It
is supremely irritating for a user to discover that he can't move his/her mouse onto the menu, or
to the quit button. You don't want to antagonize the user, do you?

The SetCursorPos call is used to put the mouse cursor where you want to. Parameters passed
to this call should also be in pixels. You can use this any way you want to, but for this exercise
all you need to know is that any call to move the mouse cursor will reposition the mouse inside
the currently clipped area. It's not enough to call ClipCursor; you have to call SetCursorPos to
actually get that little mouse pointer inside the invisible lines you've established. Parameters
passed to SetCursorPos are also in pixels.

Putting it all together, we get this: Pass a RECT variable to ClipCursor to define a single point
where your mouse can be; then call SetCursorPos with any values (0,0 will do) and the mouse
will obediently jump into that one-pixel area...

Dim CursorRect as RECT
CursorRect.Top = 200 'these numbers are arbitrary.
CursorRect.Left = 300 'these numbers are arbitrary.
CursorRect.Right = CursorRect.Left ' same as left!
CursorRect.Bottom = CursorRect.Top ' same as top!
ClipCursor CursorRect
SetCurSorPos 0, 0

Note how we set the allowable region for the cursor to an area one pixel high by one pixel wide.
The call to SetCursorPos places the mouse pointer at that exact spot, since it's not allowed
anywhere else. The result is total control.

You can easily place this code snippet inside a loop or some other algorithm to modify the
values of RECT and make the mouse pointer move around on the screen. You can also insert
DoEvents() calls inside the loop to control the speed of the mouse and allow Windows to
process other events.

In fact, a DoEvents() inside the loop is probably a good idea; if you have enough of them, the
mouse cursor will change to a bar over a text box, a resizing arrow over a window border -- in
fact, it'll behave just like it always does when the user moves it. If you want smoother motion
and greater speed, and also wish to prevent Windows from processing other events (including

the redraw of your form after you click the button) leave DoEvents() out of the loop.

This week's example...

VBEX017 moves the mouse up and down, left and right on the screen at various speeds. A
control array of buttons is used to initiate mouse movement, and the index of the button pushed
determines how many DoEvents() calls are put in the loop. The more calls, the slower the
cursor movement.

To duplicate this example, create the form VB017EX with the following controls...

CONTROL CAPTION PROPERTIES
Command1() Slow Control Array - elements 0,1,2

Medium
Fast

Command2 Quit

Save the form as VB017EX.FRM. Create a global form called VB017EX.GBL. Paste code for
each file in from the example as indicated and run it. When you run the program you'll see the
mouse move right and left, down and up on your screen at various speeds.

As always, this column plus sample code is available on the Windows Online
BBS in Danville, California, phone 1 510 736-8343. This column in Windows
HELP format (VB017EX.HLP) plus the Visual Basic source code is in
VB017EX.ZIP, and may be distributed as freeware.

Barry Seymour
Marquette Computer Consultants
San Rafael, CA 415/459-0835

for Windows Online "the Weekly"

'Code Sample

Paste the following code into your GLOBAL module...
Join all lines broken by the LINE JOIN code (<+>)

Declare Sub ClipCursor Lib "User" (lpRect As Any)
Declare Sub SetCurSorPos Lib "User" (ByVal X As Integer, <+>
 ByVal Y As Integer)

Type RECT
 Left As Integer
 Top As Integer
 right As Integer
 Bottom As Integer
End Type

Global CursorRect As RECT

Global ScreenHeight As Integer
Global ScreenWidth As Integer

Paste the following code into your VB017EX.FRM form...

Sub Form_MouseUp (Button As Integer, Shift As Integer, X As Single, Y
As Single)
 MousePressed = 0
End Sub

Sub Command1_Click (Index As Integer)

 Speed% = (Index * 10) + 1
 ' INDEX SETS THE SPEED OF THE MOUSE.
 ' the higher the index, the fewer the
 ' DoEvents() calls, hence the higher the speed.
 ' We also add one to avoid a DIVIDE BY ZERO error.

 'RESTORE CURSOR TO FULL SCREEN, Just in case..
 CursorRect.Top = 0
 CursorRect.Left = 0
 CursorRect.right = ScreenWidth
 CursorRect.Bottom = ScreenHeight
 ClipCursor CursorRect

 SetCurSorPos 400, 300

 For X% = 0 To ScreenWidth ' left to right
 CursorRect.Top = 200
 CursorRect.Left = X%
 CursorRect.right = CursorRect.Left
 CursorRect.Bottom = CursorRect.Top
 ClipCursor CursorRect
 SetCurSorPos 0, 0
 If X% Mod Speed% = 0 Then D% = DoEvents()
 Next X%

 For X% = ScreenWidth To 0 Step -1 'Right To Left
 CursorRect.Top = 200
 CursorRect.Left = X%
 CursorRect.right = CursorRect.Left
 CursorRect.Bottom = CursorRect.Top
 ClipCursor CursorRect
 SetCurSorPos 0, 0
 If X% Mod Speed% = 0 Then D% = DoEvents()
 Next X%

 For Y% = 0 To ScreenHeight 'top to bottom
 CursorRect.Top = Y%
 CursorRect.Left = 250
 CursorRect.right = CursorRect.Left
 CursorRect.Bottom = CursorRect.Top
 ClipCursor CursorRect
 SetCurSorPos 0, 0
 If X% Mod Speed% = 0 Then D% = DoEvents()
 Next Y%

 For Y% = ScreenHeight To 0 Step -1
 CursorRect.Top = Y%
 CursorRect.Left = 250
 CursorRect.right = CursorRect.Left
 CursorRect.Bottom = CursorRect.Top
 ClipCursor CursorRect
 SetCurSorPos 0, 0
 If X% Mod Speed% = 0 Then D% = DoEvents()
 Next Y%

 CursorRect.Top = 0
 CursorRect.Left = 0
 CursorRect.right = ScreenWidth

 CursorRect.Bottom = ScreenHeight
 ClipCursor CursorRect

 SetCurSorPos ScreenWidth / 2, ScreenHeight / 2
End Sub

Sub Form_Load ()
 'init global vars...
 ScreenHeight = screen.Height / 15
 ScreenWidth = screen.Width / 15
End Sub

Sub Command2_Click ()
 CursorRect.Top = 0
 CursorRect.Left = 0
 CursorRect.right = screen.Width / 15
 CursorRect.Bottom = screen.Height / 15
 ClipCursor CursorRect
 End
End Sub

Marquette Computer Consultants
Visual Solutions for Business Computing

Marquette Computer Consultants provides a broad range of services for business computing
in the San Francisco Bay Area using IBM compatible desktop computers in the Microsoft
Windows 3.x environment. MCC offers the following services...

Windows Programming in Microsoft Visual Basic
Windows installation, optimization training and support
Database programming for Windows / DOS applications in standalone,

networked and / or SQL Server environments
Hardware support, assistance and troubleshooting

Barry Seymour of Marquette Computer Consultants has extensive experience in Visual Basic,
having worked exclusively in that environment ever since Microsoft distributed pre-release
evaluation copies of "Thunder" to selected developers in May of 1991. He has also had
experience in developing Visual Basic programs in the client-server environment, using
Microsoft's Visual Basic/SQL Server link.

Mr. Seymour also has supported Windows in a multiple LAN environment and has provided
hardware and software support for Novell and LAN Manager file servers and workstations in
complex, client-server oriented development environments.

Mr. Seymour is also the author of TaskTracker for Windows, a shareware time management and
reporting program currently available on Windows OnLine, CompuServe, BIX and many other
bulletin board services.

Mr. Seymour writes the VISUAL BASICS column for Windows OnLine and WUGNET.

